





# Criticality and Abiotic Resource Depletion in LCA

# Workshop International Resource Panel 13-14 November 2012, Ranco, Italy

Ester van der Voet

**UNEP IRP Tokyo** 

27 November 2012









- Depletion: the amount of a specific resource is reduced
- Scarcity: the amount of a specific resource, that is used in society, is/will be insufficient
- Criticality: the resource may be scarce, and is also important.









- Depletion:
  - Geological / natural reserves on the planet
- Scarcity:
  - All stocks on the planet that can be profitably accessed (economic availability)
  - Political / social / environmental availability
  - Rate of extraction
- Criticality: resource may be scarce, and is important for society as well
  - Substitutability
  - Future applications, expected future demand



# Abiotic depletion in LCA

- Abiotic depletion is artefact of wishing to isolate problems within clear system boundaries of economy and environment
  - "reserve" depends on (future) technology
- Artefacts can only be cured artificially
  - there is no "correct" way, not even in theory
- Assessment of depletion problem can never be completely verified empirically
  - one cannot truly validate a non-empirical method



# Abiotic depletion in LCA

- As a consequence, it is one of most frequently discussed impact categories
  - consequently a wide variety of definitions and methods available
  - different methodologies reflect differences in problem definition



## Abiotic resources: definition

 Natural resources (including energy resources) such as iron ore, crude oil and wind energy which are regarded as non-living



# Abiotic resources: definition

- Deposits: not regenerated within human lifetimes
  - fossil fuels, minerals, sediments, clay, etc.
- Funds: regenerated within human lifetimes
  - groundwater and soil
- Flows: constantly regenerated
  - wind, river water, solar energy (*competitive use*)
- Difficult to combine





There are other (problem) definitions, however ...

At least, four problem definitions can be distinguished:

- A. decrease of resource itself
- B. decreasing world reserves of useful energy / exergy
- C. contribution of current extraction processes to other impact categories
- D. change in environmental impact of extraction processes at some point in future (e.g. result of having to extract lower-grade ores or recover materials from scrap)



# And thus also many methods

#### Aggregation and assessment based on:

| method description                        | examples                                  | problem def. |
|-------------------------------------------|-------------------------------------------|--------------|
| none                                      | Lindfors, 1996                            | С            |
| mass of resources extracted               | Lindfors et al., 1995c                    | А            |
| 'ultimate reserves' or 'economic          | Heijungs et al., 1992; Guinée & Heijungs, | А            |
| reserves', and/or current extraction rate | 1995; Ekvall et al., 1997; Goedkoop,      |              |
|                                           | 1995; Hauschild & Wenzel, 1998            |              |
| cost of 'restoring' the resource to its   | Pedersen, 1991; Steen, 1995               | C, D         |
| original, natural state, or on the costs  |                                           |              |
| associated with substituting current      |                                           |              |
| extraction processes by presumed          |                                           |              |
| 'sustainable' processes                   |                                           |              |
| energy content or exergy content or       | Finnveden, 1996b; see also Ayres et al.,  | В            |
| consumption                               | 1996 and Ayres, 1998                      |              |
| change in the anticipated environmental   | Blonk et al. (1997a) and Müller-Wenk      | D            |
| impact of the resource extraction process | (1998) in Goedkoop & Spriensma, 1999      |              |
| due to lower-grade deposits having to be  |                                           |              |
| mined in the future                       |                                           |              |



#### **ICLD** assessment

#### Table 27 Summary of the analysis of six midpoint characterisation methods against the adapted criteria for resources.

|                                                     |   | Exergy                                                                                                                                         |   | Swiss Ecoscarcity                                                                                                                                   | Г | CML2002                                                                                                                                                    | Г | EDIP2003                                                                                                                                                                                                                                                   | Г | MEEuP                                                                                                                                      | Г | Swiss Ecoscarcity water                                                                                                                                                                 |
|-----------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     |   |                                                                                                                                                |   | energy                                                                                                                                              |   |                                                                                                                                                            |   |                                                                                                                                                                                                                                                            |   |                                                                                                                                            |   | · · · · ·                                                                                                                                                                               |
| Category                                            |   | Category 1                                                                                                                                     |   | Category 1                                                                                                                                          |   | Category 2                                                                                                                                                 |   | Category 2                                                                                                                                                                                                                                                 |   | Category 3                                                                                                                                 |   | Category 3                                                                                                                                                                              |
| Completeness<br>of scope                            | А | The model is very<br>complete. It covers<br>minerals, fossil fuels and<br>flow resources (including,<br>solar, wind, hydropower<br>and water). | с | The model is<br>relatively complete for<br>energy resources,<br>with an interesting but<br>Swiss specific<br>correction factor for<br>renewability. | С | The model is relatively<br>complete for mineral and<br>fossil-fuel depletion.                                                                              | с | The model is relatively<br>complete for mineral and<br>fossil fuel-depletion. An<br>attempt for water use and<br>wood extraction is made.                                                                                                                  | E | The model includes adding<br>up water amounts, but<br>does not differentiate<br>according to regional<br>differences in water<br>scarcity. | с | The model is relatively<br>complete for water depletion,<br>in a regionally-specified way.                                                                                              |
| Environmental<br>relevance                          | с | Very complete<br>implementation of the<br>exergy concept. However,<br>this method does not reflect<br>scarcity.                                | с | The renewability<br>factor is a new<br>concept, but needs<br>elaboration to become<br>useful.                                                       | в | Characterisation factors for<br>economic reserves, reserve<br>base, and ultimate reserves<br>are available. Antimony is the<br>reference resource adopted. | с | Based on 1990 extraction<br>rates and economically-<br>exploitable reserves. Does<br>not capture importance of a<br>resource well, since<br>extraction rates are not<br>included. Water impact is not<br>applicable, only one CF for all<br>types of wood. | D | Simplistic environmental<br>model for assessing the<br>impact of water.                                                                    | в | The model assesses water<br>depletion on a regional basis.<br>Recovery rates are included.                                                                                              |
| Scientific<br>robustness &<br>Certainty             | в | The paper is reviewed by<br>external experts.<br>Uncertainties are described<br>but not quantified.                                            | E | There is only a very<br>rudimentary scientific<br>model.                                                                                            | в | The paper is reviewed by<br>external experts. Uncertainties<br>are described but not<br>quantified.                                                        | с | The paper is reviewed by<br>external experts. High<br>uncertainties arise in the<br>economically-based reserves<br>calculations, but these are not<br>quantified.                                                                                          | E | There is no scientific<br>model.                                                                                                           | с | The paper is not reviewed<br>yet, proposed by the UNEP-<br>SETAC Life Cycle Initiative<br>but suggested in SETAC<br>UNEP results. Uncertainties<br>are discussed but not<br>quantified. |
| Documentation,<br>Transparency &<br>Reproducibility | А | The model and results are<br>very well documented.                                                                                             | в | The model<br>documentation and<br>results are so far only<br>available in German.                                                                   | A | Documentation is available<br>online. The website has<br>descriptions and factors.                                                                         | А | The model documentation<br>and results are easy<br>available.                                                                                                                                                                                              | A | The documentation is<br>easily available.                                                                                                  | в | The model documentation<br>and results are so far only<br>available in German.                                                                                                          |
| Applicability                                       | А | Characterisation factors are<br>available and can be easily<br>applied.                                                                        | A | Characterisation<br>factors are available<br>and can be easily<br>applied.                                                                          | А | Characterisation factors are<br>available and can be easily<br>applied.                                                                                    | А | Characterisation factors are<br>available and can be easily<br>applied.                                                                                                                                                                                    | A | Characterisation factors<br>are available and can be<br>easily applied.                                                                    | в | Characterisation factors are<br>available and can be applied<br>when country is specified.                                                                                              |
| Science-based<br>criteria                           | в | The model is very<br>complete. However, there<br>are different views on<br>whether exergy is a<br>relevant indicator.                          | С | Mixture of science<br>and Distance-to-<br>Target.                                                                                                   | в | Robust method for mineral<br>resources. characterisation<br>factors for available for<br>economic reserve, reserve<br>base, and ultimate reserves.         | в | Robust method for non-<br>renewable resource<br>depletion, which is based on<br>economically-exploitable<br>reserves.                                                                                                                                      | D | Too simplistic for<br>consideration as a science<br>based method.                                                                          | в | Promising approach for water<br>use.                                                                                                                                                    |
| Stakeholders<br>acceptance                          | с | It is not clear whether<br>policy-makers are<br>interested in using exergy<br>as a resource indicator.                                         | D | This method is mainly<br>interesting for Swiss<br>policymaking.                                                                                     | в | The principles of the method<br>are relatively easy to<br>understand, but the model is<br>not endorsed by an<br>authoritative body.                        | в | The principles of the method<br>are relatively easy to<br>understand, but the model is<br>not endorsed by an<br>authoritative body.                                                                                                                        | E | Simple method, not<br>endorsed by an<br>authoritative body.                                                                                | в | The principles of the method<br>are relatively easy to<br>understand, but the model is<br>not endorsed by an<br>authoritative body.                                                     |



# **ICLD** assessment

ICLD concludes:

- No ideal method
- Recommended methods:
  - CML 2002 (level II)
  - Swiss ecoscarcity for water (level III)
  - ReCiPe (interim).



Universiteit Leiden Abiotic depletion in LCA



Depletion, scarcity, criticality?

- Methods address physical scarcity
  - Reserves, availability, rate of extraction
  - No societal aspects
- Methods do not address criticality
  - No statement on importance
  - Nor on future demand
- Should they?
- If so, how?

UNEP IRP Tokyo





Criticality in LCA

Should they?

Arguments for:

 Relevance, link to present highly prominent debate

Arguments against:

 Criticality aspects depend on values, not facts: is a statement on the severity of scarcity for society.





# Criticality in LCA

### If so, how?

#### Societal aspects of scarcity:

- Highly context dependent
- Similar to location dependent emissions...
- ... but resource market is global, even if resource deposits are local
- (except water)

# Criticality:

- Importance as part of weighting?
- Weighting factors to be established, based on perceived importance?









- Depletion is quite as complex as pollution
- Different depletion impact categories based on (physical) characteristics of resources, for example
  - Metals
  - Fossil fuels
  - Surface minerals
  - Nutrients
  - Water
  - Land
  - •

UNEP IRP Tokyo





Development of abiotic depletion in LCA



- Should not be confused with emission impacts related to extraction
  - they have their place already in LCA
- Depletion: an economic or an environmental problem?
  - in or out?
  - treatment of societal aspects?
- Normalisation and weighting procedures to be developed
- End point methods also to be developed
- Criticality aspects can be part of those.